548B的特点是采用环形剪切模式的陶瓷晶体为敏感元件,振动传感器,具有长期保持输出稳定的特性。内部电路是采用三线制系统,提供恒压激励的同时传输低阻抗电压输出信号,专业的电路设计满足了无线应用中电池供电时,对传感器的低功耗的要求,振动传感器。信号地与外壳相连,振动传感器,可配置绝缘垫片或基座;同时信号放大电路设计考虑了极性反向保护。548B产品采用了重量轻、激光焊接密封的不锈钢外壳封装结构,3引线输出方便客户后续的组装和电气连接,紧凑的圆柱状结构适合嵌入式安装于各类振动冲击测试设备。548B系列产品具有宽频带响应特性,对于轻型结构的动态振动和冲击测量应用来说。是.选择。高/低频振动测量用通用型三轴加速度传感器,主要应用于:高速列车、重载轴承、高层建筑监控。振动传感器
315W的特点是采用环形剪切模式的陶瓷晶体为敏感元件,具有长期保持输出稳定的特性。内部电路是在IEPE系统的两线制上同时提供恒流源激励和传输低阻抗电压输出信号,信号地内部屏蔽,并与外壳隔离;同时信号放大电路设计考虑了极性反向保护。外壳采用激光焊接工艺以保证产品的密封性;输出连接头采用标准的MIL-C-5015玻璃绝缘连接器以满足不同环境下使用时输出的稳定性;315W系列加速度传感器支持粘合剂安装,也支持1/4-28的螺纹孔牢固安装。315W系列加速度传感器具有频带响应宽和抗冲击的特性,所以常在有偶发冲击信号的环境下用于工业振动监控。另外,森瑟科技还提供与标准MIL-C-5015接头配套的线缆,型号16A-L可选。四川温振一体传感器选型实时波形输出、防雷IEPE加速度传感器,主要应用:鼓风机监测、齿轮箱监控、轴承检测、机台状态监控。
industryTemplate
573A系列产品是一款可同步测量振动和冲击的低噪声IEPE单轴加速度传感器,此加速度传感器的内部电路(TEDS功能可选)是在IEPE系统的两线制上同时提供恒流源激励和传输低阻抗电压输出信号,信号地与外壳相连,绝缘安装螺丝及安装座可选;同时信号放大电路设计考虑了极性反向保护。外壳采用激光焊接工艺以保证产品的密封性;输出连接头采用微型10-32的玻璃绝缘连接器以满足不同环境下使用时输出的稳定性。573A系列加速度传感器除了粘合剂安装还提供了10-32的螺纹孔以便牢固安装;573A系列加速度传感器具有宽频带响应特性,.应用于轻量结构产品做振动、冲击测试;同时也应用于电子产品行业的跌落测试设备。另外,森瑟科技还提供与微型10-32接头配套的线缆,型号11-3可选。压阻式MEMS敏感元件的加速度传感器,。主要应用于:汽车碰撞测试、冲击测试、假人测试。
通常情况下,带宽越宽抗噪声能力越强。当系统接收到噪声信号时,可通过扩展带宽把噪声能量平均到整个带宽上,从而降低单位带宽上的噪声能量。TSB572配备轨对轨输入输出,增益带宽积(GBW,评价放大器性能的指标)为2.5MHz,输入失调电压1.5mV。器件在容性负载时工作稳定,相位反转保护功能优异。4.0V至36V的宽电源电压可以使用各种电源获得额定参数。顺便说一下ST的比较器。轨对轨输入1.8V高速比较器TS3021H也是-40至150℃宽温范围,传播延迟38ns,具有高速响应时间。当电源电压在2V到5V时,比较器可以在很宽的温度范围内工作。TS3021H的微功耗低至73μA,从而具有功耗电流与响应时间的之比,满足汽车应用要求。运算放大器和比较器助力传感器智能时下,传感器已成为现代汽车的重要元件,车辆中的传感器比比皆是。车辆的的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于各种传感器。而让传感器变得更加智能,真正发挥作用还要靠其后端的运算放大器和比较器,可以这样将,其数量和种类将伴随传感器与日俱增。温振一体三轴加速度传感器,主要应用于:嵌入式监控、冲击记录仪、机台状态监控。四川温振一体传感器选型
工业振动测量IEPE加速度传感器,主要应用:风力发电机、齿轮箱监控、轴承检测、设备状态监控。振动传感器
310AM1的特点是采用环形剪切模式的陶瓷晶体为敏感元件,具有长期保持输出稳定的特性。内部电路是在IEPE系统的两线制上同时提供恒流源激励和传输低阻抗电压输出信号,信号地内部屏蔽,并与外壳隔离;同时信号放大电路设计考虑了极性反向保护。外壳采用激光焊接工艺以保证产品的密封性;输出连接头采用标准的MIL-C-5015玻璃绝缘连接器以满足不同环境下使用时输出的稳定性;310AM1系列加速度传感器除了粘合剂安装还提供了1/4-28的螺纹孔以便牢固安装。310AM1系列加速度传感器具有宽频带响应和抗冲击的特性,所以对环境比较恶劣的工业振动监控和测量使用来说,310AM1。是一款理想的加速度传感器。振动传感器
文章来源地址: http://nengyuan.chanpin818.com/fnsb/flfdj/deta_10128481.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。